
Ch.4 Enhancing the Simulation

Strategy with Knowledge
This chapter is partially based on the publications:

 B. Bouzy and G.M.J-B. Chaslot (2006). Monte-Carlo Go
Reinforcement Learning Experiments. IEEE 2006
Symposiumon Computational Intelligence in Games(eds.
G. Kendall and S. Louis), pp. 187-194.

 G.M.J-B. Chaslot, C. Fiter, J-B. Hoock, A. Rimmel, and
O. Teytaud (2010). Adding Expert Knowledge and
Exploration in Monte-Carlo Tree Search. Advancesin
Computer Games Conference (ACG 2009) (eds. H.J. van
den Herik and P.H.M. Spronck), Vol. 6048 of Lecture
Notes in Computer Science (LNCS), pp. 1–13, Springer-
Verlag, Heidelberg, Germany.

What we discuss in this Chapter

 In this chapter we will discuss two different

simulation strategies that apply knowledge:

1. urgency-based simulation.

2. sequence-like simulation.

Urgency-Based simulation

 Urgency-Based simulation is basically a 2 step

method.

 In the first step, an urgency value, Uj , is

computed for each move j.

 In the second step, taking the urgencies into

account a move is randomly drawn.

The probability of each move

 M is the set of all possible moves for a given

position.

About the Urgency-based Simulation

 If the urgency-based simulation strategy is too

random, the level of play of the MCTS program

will be close to the level of a program that draws

plain randomly.

 If the urgency-based simulation strategy is too

deterministic, the simulations will be too similar,

which will lead to a lack of exploration and hence

to meaningless Monte-Carlo simulations.

Computing Urgencies in the Game of

Go

 In order to compute the urgency value of each

move.

 Bouzy (2005) computed for his program

INDIGO the urgency as the sum of two values:

1. the capture-escape value Vce.

2. the pattern value Vp.

The meaning of the two values

Vce depends on

1. the number of stones that could be captured.

2. the number of stones that could escape a

capture by playing the move.

Vp(i) =∑j wj × mi,j where wj is the weight of

pattern j, and mi,j is 1 if move i matches pattern j

and is 0 otherwise.

Sequence-Like Simulation

 This simulation strategy consists of selecting

each move in the proximity of the last move

played. This leads to moves being played next

to each other, creating a sequence of adjacent

moves.

How to select

 To select which move to play in the
neighborhood of the last move, 3×3 patterns
similar to the ones proposed by Bouzy (2005)
were used. After each move, the program scans
for 3 × 3 patterns at a Manhattan distance of 1
from the last move. If several patterns are
found, one is chosen randomly. The move is
then played in the centre of the chosen pattern.
If no pattern is found, a move is chosen
randomly on the board.

Learning Automatically the Simulation

Strategy

 Learning from Matches between Programs

 Learning from the Results of Simulated

Games

 Learning from Move Evaluations

 Learning from the Mean-Squared Errors on

a Set of Positions

 Learning from Imbalance

Learning from Matches between

Programs

 fitness function has two problems :

1. the number of parameters can be quite huge.

2. it is difficult to evaluate how each pattern

contributed to the victory.

Learning from the Results of

Simulated Games

 Learning from the results of simulated games
consists of playing games between two
simulation strategies .(let S1 and S2 be these
strategies), and observe the results r1, r2, ..., rn
of these games.

 The learning algorithm is then applied after
each game, based on the decisions that have
been made by S1 and S2 for the game i, and the
result ri.

Learning from Move Evaluations

 how each move should be evaluated.

 we chose as a move evaluation, denoted vi for

a move i, to use fast Monte-Carlo Evaluations.

Learning from Move Evaluations

 how the weights should be related to the move

evaluations.

 wi as the weight of the pattern that matches for

the move i. Second, we chose to associate the

move evaluation v with the weight w such that

for every pair of legal moves (a, b) in a board

position.

Learning from the Mean-Squared

Errors on a Set of Positions

 The learnt simulation strategy was as good as

using expert patterns, but decreased the

number of simulations. Hence, MOGO still

plays with expert patterns.

Learning from Imbalance

Learning from Imbalance
Learning from Move

Evaluations

9×9 win

19×19 win

• The imbalance is the difference between the

errors made by the first player and the errors

made by the second player.

• The underlining idea is that it is fine to make

mistakes in the simulation if the other player

makes mistakes as well.

Conclusions of Ch.4

1. Avoiding big mistakes is more important than

playing good moves. If a move has a high

probability to be a bad move, it should be avoided

with a high probability.

2. Simplifying the position.

3. Balancing exploration and exploitation. The

simulation strategy should not become too stochastic,

nor too deterministic.

Conclusions of Ch.4

1. Learning from matches between programs.
 The drawback of this method is that it is relatively slow, since learning can

only be done in low dimensions.

 The advantage of this method is that it is able to learn simultaneously the

simulation strategy together with other parts of MCTS.

2. Learning from the results of simulated games.

3. Learning from move evaluations.
 This method performed better than learning from the results of simulated

games.

4. Learning from the mean-squared errors on a set

of positions.

5. Learning from imbalance.

Ch.5 Enhancing the Selection Strategy

with Knowledge

This chapter is based on the following publications:

 G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den
Herik, and B. Bouzy (2007). Progressive Strategies for Monte-Carlo Tree
Search. Proceedings of the 10th Joint Conference on Information Sciences
(JCIS 2007) (eds. P. Wang et al.), pp. 655–661.

 G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den
Herik, and B. Bouzy (2008c). Progressive Strategies for Monte-Carlo Tree
Search. New Mathematics and Natural Computation, Vol. 4, No. 3, pp.
343–357.

 G.M.J-B. Chaslot, C. Fiter, J-B. Hoock, A. Rimmel, and O. Teytaud (2010).
Adding expert knowledge and exploration in Monte-Carlo Tree Search.
Advances in Computer Games Conference (ACG 2009) (eds. H.J. van den
Herik and P.H.M. Spronck), Vol. 6048 of Lecture Notes in Computer
Science (LNCS), pp. 1–13, Springer-Verlag, Heidelberg, Germany.

What we discuss in this chapter

 progressive bias : Progressive bias directs the

search according to knowledge.

 progressive widening : Progressive widening

first reduces the branching factor, and then

increases it gradually.

Progressive Strategies

 They are inaccurate when the number of
simulations is low and when the branching factor
is high.

 Such strategies use (1) knowledge and (2) the
information available for the selection strategy.

 A progressive strategy chooses moves according
to knowledge when a few simulations have been
played, and converges to a standard selection
strategy with more simulations.

Progressive Bias

 To direct the search according to – possibly time-
expensive – heuristic knowledge.

 For that purpose, the selection strategy is
modified according to that knowledge.

 The influence of this modification is important
when a few games have been played, but
decreases fast (when more games have been
played) to ensure that the strategy converges to a
pure selection strategy.

 We chose f(ni) = Hi/ni+1 , where Hi represents

heuristic knowledge, which depends only on

the board configuration represented by the

node i.

 The variables vi = the value of move, ni = the

visit count of i, np = the visit count of p, and C

= coefficent

Progressive Widening

 Reducing the branching factor artificially

when the selection strategy is applied

 Increasing it progressively as more time

becomes available.

