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What we discuss in this Chapter 

 In this chapter we will discuss two different 

simulation strategies that apply knowledge: 

1. urgency-based simulation. 

2. sequence-like simulation. 



Urgency-Based simulation 

 Urgency-Based simulation is basically a 2 step 

method. 

 

 In the first step, an urgency value, Uj , is 

computed for each move j. 

 In the second step, taking the urgencies into 

account a move is randomly drawn. 



The probability of each move 

 M is the set of all possible moves for a given 

position. 

 



About the Urgency-based Simulation 

 If the urgency-based simulation strategy is too 

random, the level of play of the MCTS program 

will be close to the level of a program that draws 

plain randomly. 

 

 If the urgency-based simulation strategy is too 

deterministic, the simulations will be too similar, 

which will lead to a lack of exploration and hence 

to meaningless Monte-Carlo simulations. 



Computing Urgencies in the Game of 

Go 

 In order to compute the urgency value of each 

move. 

 

 Bouzy (2005) computed for his program 

INDIGO the urgency as the sum of two values: 

1. the capture-escape value Vce. 

2. the pattern value Vp. 



The meaning of the two values 

Vce depends on  

1. the number of stones that could be captured. 

2. the number of stones that could escape a   

capture by playing the move. 

 

Vp(i) =∑j wj × mi,j where wj is the weight of 

pattern j, and mi,j is 1 if move i matches pattern j 

and is 0 otherwise. 



Sequence-Like Simulation 

 This simulation strategy consists of selecting 

each move in the proximity of the last move 

played. This leads to moves being played next 

to each other, creating a sequence of adjacent 

moves. 

 



How to select 

 To select which move to play in the 
neighborhood of the last move, 3×3 patterns 
similar to the ones proposed by Bouzy (2005) 
were used. After each move, the program scans 
for 3 × 3 patterns at a Manhattan distance of 1 
from the last move. If several patterns are 
found, one is chosen randomly. The move is 
then played in the centre of the chosen pattern. 
If no pattern is found, a move is chosen 
randomly on the board. 



Learning Automatically the Simulation 

Strategy 

 Learning from Matches between Programs 

 Learning from the Results of Simulated 

Games 

 Learning from Move Evaluations 

 Learning from the Mean-Squared Errors on 

a Set of Positions 

 Learning from Imbalance 

 



Learning from Matches between 

Programs 

 fitness function has two problems : 

1. the number of parameters can be quite huge. 

2. it is difficult to evaluate how each pattern 

contributed to the victory. 

 



Learning from the Results of 

Simulated Games 

 Learning from the results of simulated games 
consists of playing games between two 
simulation strategies .(let S1 and S2 be these 
strategies), and observe the results r1, r2, ..., rn 
of these games.  

 The learning algorithm is then applied after 
each game, based on the decisions that have 
been made by S1 and S2 for the game i, and the 
result ri. 



Learning from Move Evaluations 

 how each move should be evaluated.  

 

 we chose as a move evaluation, denoted vi for 

a move i, to use fast Monte-Carlo Evaluations. 

 

 



Learning from Move Evaluations 

 how the weights should be related to the move 

evaluations.  

 

 wi as the weight of the pattern that matches for 

the move i. Second, we chose to associate the 

move evaluation v with the weight w such that 

for every pair of legal moves (a, b) in a board 

position. 

 



Learning from the Mean-Squared 

Errors on a Set of Positions 

 The learnt simulation strategy was as good as 

using expert patterns, but decreased the 

number of simulations. Hence, MOGO still 

plays with expert patterns. 



Learning from Imbalance 

Learning from Imbalance 
Learning from Move 

Evaluations 

9×9 win 

19×19 win 

• The imbalance is the difference between the 

errors made by the first player and the errors 

made by the second player. 

• The underlining idea is that it is fine to make 

mistakes in the simulation if the other player 

makes mistakes as well. 



Conclusions of Ch.4 

1. Avoiding big mistakes is more important than 

playing good moves. If a move has a high 

probability to be a bad move, it should be avoided 

with a high probability. 

 

2. Simplifying the position. 

 

3. Balancing exploration and exploitation. The 

simulation strategy should not become too stochastic, 

nor too deterministic. 



Conclusions of Ch.4 

1. Learning from matches between programs.  
 The drawback of this method is that it is relatively slow, since learning can 

only be done in low dimensions.  

 The advantage of this method is that it is able to learn simultaneously the 

simulation strategy together with other parts of MCTS. 

2. Learning from the results of simulated games. 

3. Learning from move evaluations. 
 This method performed better than learning from the results of simulated 

games. 

4. Learning from the mean-squared errors on a set 

of positions. 

5. Learning from imbalance. 



Ch.5 Enhancing the Selection Strategy 

with Knowledge 

This chapter is based on the following publications: 
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What we discuss in this chapter 

 progressive bias : Progressive bias directs the 

search according to knowledge. 

 

 progressive widening : Progressive widening 

first reduces the branching factor, and then 

increases it gradually. 



Progressive Strategies 

 They are inaccurate when the number of 
simulations is low and when the branching factor 
is high. 

 

 Such strategies use (1) knowledge and (2) the 
information available for the selection strategy.  

 

 A progressive strategy chooses moves according 
to knowledge when a few simulations have been 
played, and converges to a standard selection 
strategy with more simulations. 

 



Progressive Bias 

 To direct the search according to – possibly time-
expensive – heuristic knowledge. 

 

 For that purpose, the selection strategy is 
modified according to that knowledge.  

 

 The influence of this modification is important 
when a few games have been played, but 
decreases fast (when more games have been 
played) to ensure that the strategy converges to a 
pure selection strategy. 



 We chose f(ni) = Hi/ni+1 , where Hi represents 

heuristic knowledge, which depends only on 

the board configuration represented by the 

node i.  

 The variables vi = the value of move, ni = the 

visit count of i, np = the visit count of p, and C 

= coefficent  



Progressive Widening 

 Reducing the branching factor artificially 

when the selection strategy is applied 

 Increasing it progressively as more time 

becomes available. 

 


